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We investigate the equivalent capacitance between two arbitrary nodes in a perturbed
network (i.e. an interstitial capacitor is introduced between two arbitrary points in the
perfect lattice) based on the lattice Green’s function approach. An explicit formula for
the capacitance of the perturbed lattice is derived in terms of the capacitances of the
perfect lattice by solving Dyson’s equation exactly. Numerical results are presented for
the infinite perturbed square network. Finally, the asymptotic behavior of the effective
capacitance has been studied.
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1. Introduction

The calculation of the resistance between two arbitrary lattice sites in infinite or

finite networks is an old problem.1–22 Besides being important in physics, it is also

of interest in electrical engineering. Previous works include studying infinite perfect

and perturbed networks. For the infinite square and simple cubic networks, exper-

imental results are obtained for both perfect and perturbed cases. A comparison

was carried out with the calculated values where excellent agreements have been

found.10–13

As one can see from the literature, most of the previous attention has been

paid to studying infinite networks of identical resistors. Studying infinite networks

of identical capacitors is also of vital importance in electrical circuit theory. In

recent works,23–28 the infinite perfect and perturbed networks consisting of identical

¶Corresponding author.

1350123-1

http://dx.doi.org/10.1142/S0217984913501236
mailto:owaidat@ahu.edu.jo


June 6, 2013 14:2 WSPC/147-MPLB S0217984913501236 2–8

M. Q. Owaidat et al.

Fig. 1. A square lattice of identical capacitors with an interstitial capacitor C′.

capacitors are studied. Two methods have been employed in studying such networks:

the lattice Green’s function (LGF) and the charge distribution methods.

In this paper, the LGF method is applied to determine the effective capacitance

between any two lattice sites in a perturbed lattice obtained by introducing an extra

capacitor between two arbitrary points in a perfect network consisting of identical

capacitors. This is illustrated in Fig. 1, an infinite square network of identical ca-

pacitors each of capacitances C. An extra capacitor (interstitial capacitor) C′ is
connected between the two sites r0 and r′0 in the infinite square perfect network

which results in obtaining a perturbed network. The effective capacitance across

this capacitor is equal to the parallel resultant of the capacitance between the sites

r0 and r′0 in the perfect lattice and the interstitial capacitor.

The paper is organized as follows: In Sec. 2, some basic definitions for the

effective capacitance in the infinite perfect network are introduced. In Sec. 3, the

formalism of Green’s function and the two-point capacitance in a perturbed network

is given. Numerical results for the infinite perturbed square network are presented

in Sec. 4. The paper is ended with a brief conclusion.

2. Basic Definitions and Preliminaries

First of all, consider an infinite d-dimensional network consisting of identical ca-

pacitors each of capacitance and assume that all lattice points are specified by the

position vector

r� = �1a1 + �2a2 + · · ·+ �dad , (1)

where �1, �2, . . . , �d are integers (positive, negative or zero) a1, a2, . . . , ad are inde-

pendent primitive translation vectors, in the case of d-dimensional hypercube lattice

a1 = a2 = · · · = ad = a is the lattice constant.
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For such an infinite network, the effective capacitance between sites ri and rj
in the perfect lattice can be expressed in terms of the LGF as:23

Co(ri, rj) =
C

2[Go(ri, ri)−Go(ri, rj)]
. (2)

For the case of infinite perfect square network ri = (ix, iy) and rj = (jx, jy).

Also as the separation between the two sites ri and rj in the infinite square

perfect network increases, the asymptotic behavior for the effective capacitance

reads:23

Co(ri, rj) ≈ C
1
2π [ln((jx − ix)2 + ((jy − iy)2) + 2γ + ln 8]

. (3)

As the separation between the sites ri and rj goes to infinity then the above equation

implies:

Co(ri, rj)

C
→ 0 . (4)

3. Lattice Capacitance Function for Perturbed Lattice

In this section, we consider the problem of determining the effective capacitance for

the perturbed network that is obtained by introducing an extra capacitor between

any two nodes in the perfect lattice.

The electrical charge contribution due to bond (ri0 , rj0) in the perfect lattice at

site rk is given by

δQ(rk) = C(δ(rk, ri0)− δ(rk, rj0 ))(V (ri0 )− V (rj0)) . (5)

If an extra capacitor C′ is placed between the nodes ri0 and rj0 in a perfect lattice,

the effective capacitance across the interstitial capacitor will be equal to the parallel

combination of the interstitial capacitor and the perfect capacitance C0(ri0 , rj0).

Therefore, the charge contribution due to interstitial capacitor in the perturbed

lattice at site rk is

δQ′(rk)
C

=
C′

C

δQ(rk)

C
=

C′

C
(δ(rk, ri0)− δ(rk, rj0 ))(V (ri0 )− V (rj0)) . (6)

In Dirac notation, the above equation can be written as

δQ′(rk)
C

=
C′

C
〈rk|(|ri0 〉 − |rj0〉)(〈ri0 | − 〈rj0 |)|V 〉 = 〈rk|L′|V 〉 , (7)

where the operator L′ is the perturbation arising from the interstitial capacitor,

L′ =
C′

C
|α〉〈α| (8)

where

|α〉 = |ri0〉 − |rj0 〉 . (9)
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According to Kirchhoff’s law, the charge at site rk in the perturbed lattice is given

by

(−L0V )(rk) +
1

C
δQ′(rk) =

1

C
Q(rk) , (10)

where Lo is the lattice Laplacian operator for perfect lattice. This equation can be

written as

L |V 〉 = − 1

C
|Q〉 , (11)

where L is the lattice Laplacian operator for perturbed lattice:

L = L0 − L′ . (12)

Similarly to the case of a perfect lattice, we would like to find the perturbed Green’s

function G corresponding to L defined by

G = −L−1. (13)

Combining Eqs. (8), (12) and (13) we obtain

G = (1 +G0L
′)−1G0 , (14)

where G0 = −L−1
0 is the unperturbed Green’s function (for the perfect lattice).

The lattice Green’s function G can be calculated by expanding (1 + G0L
′)−1 in

Eq. (14) in a Dyson series29

G = G0 −G0L
′G0 +G0L

′G0L
′G0 −G0L

′G0L
′G0L

′G0 + · · · . (15)

The summation in the above equation can be performed exactly, because of the

simple form of L′, we obtain

G = G0 −G0|α〉
C′

C

1 +
C′

C
〈α|G0|α〉

〈α|G0 . (16)

Substituting Eq. (9) into (16), the Green’s function G(ri, rj) corresponding to L

can be evaluated in terms of the matrix elements of G0 and C′, we have

G(ri, rj) = G0(ri, rj)− C′(G0(ri, ri0 )−G0(ri, rj0))(G0(rj , ri0 )−G0(rj , rj0))

C + 2C′(G0(ri0 , ri0)−G0(ri0 , rj0 ))
.

(17)

One can notice that the denominator in the above equation is never equal to zero

and always positive. The capacitance for the perturbed lattice can be obtained in

terms of the Green’s function in the same way as for the perfect lattice. However,

the capacitance between sites ri and rj in the perturbed network is given by

C(ri, rj) =
Q

V (ri)− V (rj)
=

C

G(ri, ri) +G(rj , rj)−G(ri, rj)−G(rj , ri)
. (18)
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From Eqs. (17) and (18) and using (2), we obtain the main result for the two-point

capacitance in the perturbed lattice C(ri, rj) in terms of the perfect one, C0:

C(ri, rj) =
1

1

C0(ri, rj)
−

(
1

C0(ri, ri0)
− 1

C0(ri, rj0 )
− 1

C0(rj , ri0 )
+

1

C0(rj , rj0 )

)2

4

(
1

C′ +
1

C0(ri0 , rj0)

)
.

(19)

It is simple to find the capacitance between the nodes ri0 and rj0 . Using Eq. (19),

we find that C(ri0 , rj0) = C′+C0(ri0 , rj0), as mentioned previously. One can easily

show from Eq. (19) that as C′ goes to zero the problem reduces to the perfect

lattice.

It is clear that the perfect lattice Laplacian L0 was not used in the derivation

of Eq. (19). Thus, our main result for the two-point capacitance in the perturbed

lattice can be applied to any capacitor-lattice network of finite and infinite sizes in

which each unit cell contains only one lattice point such as triangular lattices.

To study the asymptotic behavior of the capacitance in an infinite perturbed

square lattice for large separation between the sites ri and rj , one can easily show

from Eq. (19) and from the fact that Co(ri, rj) → 0 also that C(ri, rj) → 0.

4. Numerical Results

Below we shall present some numerical results for the infinite perturbed square

lattice. Using the results for the perfect square lattice,23 the capacitance between
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Fig. 2. The capacitance for an infinite square lattice, in units of C, on the perturbed lattices

(circles for C′ = 3C and triangles for C′ = C/3) and the perfect lattice (squares) are measured
between the origin and (jx, 0).
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Table 1. The values of C(jx, jy) in units of C for a perfect and perturbed square lattices.
Two cases are considered: the interstitial capacitor C′ = 3C is introduced between the
sites ri0 = (0, 0) and the rj0 = (1, 1), and C′ = C/3 is also introduced between the sites
ri0 = (0, 0) and rj0 = (1, 1).

The site The values of the capacitance C(jx, jy)/C

(jx, jy) Perfect lattice Perturbed lattice C′ = 3C Perturbed lattice C′ = C/3

0, 0 ∞ ∞ ∞
1, 0 2 2.11802 2.52819

2, 0 1.37597 1.44833 1.69312

3, 0 1.16203 1.21281 1.3784

4, 0 1.04823 1.08773 1.21343

5, 0 0.974844 1.00771 1.11066

6, 0 0.922313 0.95088 1.03939

7, 0 0.882207 0.907765 0.986321

8, 0 0.850222 0.87355 0.944821

9, 0 0.823894 0.845499 0.911189

10, 0 0.801699 0.821926 0.88319

11, 0 0.782633 0.801732 0.859387

12, 0 0.766008 0.78416 0.83881

13, 0 0.751328 0.768675 0.820776

14, 0 0.738232 0.754884 0.804791

15, 0 0.726445 0.742488 0.790485

1, 1 1.5708 4.5708 1.90413

2, 2 1.1781 1.50802 1.2511

3, 3 1.02443 1.21105 1.06834

4, 4 0.937123 1.07451 0.970209

5, 5 0.878865 0.991209 0.906261

6, 6 0.836326 0.933367 0.860179

7, 7 0.803421 0.890053 0.824835

8, 8 0.776929 0.855969 0.796547∞
9, 9 0.754964 0.828188 0.773197

10, 10 0.736338 0.804941 0.753465

11, 11 0.72026 0.785088 0.73648

12, 12 0.706181 0.767857 0.721641

13, 13 0.693707 0.752702 0.708518

14, 14 0.682542 0.739224 0.696793

15, 15 0.672467 0.727128 0.686226

any two nodes for the perturbed square lattice can be computed using Eq. (19).

Here we consider two cases. First, the interstitial capacitor C′ = 3C is introduced

between the sites ri0 = (0, 0) and rj0 = (1, 1). Second, the interstitial capacitor

C′ = C/3 is also introduced between the sites ri0 = (0, 0) and rj0 = (1, 1). The

results are listed in Table 1. Figure 2 shows the capacitances along jx-axis for the

perfect and the perturbed lattices. It can be seen from Fig. 2 that the equivalent

capacitance between every pair of lattice points in the perturbed network is larger

than that between them in the corresponding perfect network. This fact clearly

follows from the negativity of the second term in the dominator of Eq. (19).
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5. Conclusion

We have computed the equivalent capacitance between two arbitrary lattice sites in

a perturbed network obtained by introducing an extra capacitor between two arbi-

trary nodes in the perfect lattice using Green’s function method. The capacitance

for the perturbed lattice is expressed in terms of that for the perfect one. Some nu-

merical results for the capacitances are given for the perturbed square lattice along

the x-axis. We found that the capacitance for the perturbed lattice is always larger

than that for the perfect lattice, this is due to the negativity of the second term in

the dominator of Eq. (19). A similar calculation can be performed for simple cubic

and triangular lattices.
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